<?xml version="1.0" encoding="ISO-8859-1"?>
<metadatalist>
	<metadata ReferenceType="Journal Article">
		<site>mtc-m21b.sid.inpe.br 804</site>
		<holdercode>{isadg {BR SPINPE} ibi 8JMKD3MGPCW/3DT298S}</holdercode>
		<identifier>8JMKD3MGP3W34P/3HP89A6</identifier>
		<repository>sid.inpe.br/mtc-m21b/2015/01.13.18.16.16</repository>
		<lastupdate>2015:02.12.10.56.43 sid.inpe.br/mtc-m21b/2013/09.26.14.25.20 administrator</lastupdate>
		<metadatarepository>sid.inpe.br/mtc-m21b/2015/01.13.18.16.17</metadatarepository>
		<metadatalastupdate>2018:06.04.03.04.43 sid.inpe.br/mtc-m21b/2013/09.26.14.25.20 administrator {D 2014}</metadatalastupdate>
		<doi>10.1002/2014GL061829</doi>
		<issn>0094-8276</issn>
		<label>scopus 2015-01 BoersRhBoBaMaMaKu:2014:CoNeAn</label>
		<citationkey>BoersRhBoBaMaMaKu:2014:CoNeAn</citationkey>
		<title>The South American rainfall dipole: A complex network analysis of extreme events</title>
		<year>2014</year>
		<typeofwork>journal article</typeofwork>
		<secondarytype>PRE PI</secondarytype>
		<numberoffiles>1</numberoffiles>
		<size>2671 KiB</size>
		<author>Boers, N.,</author>
		<author>Rheinwalt, A.,</author>
		<author>Bookhagen, B.,</author>
		<author>Barbosa, H. M. J.,</author>
		<author>Marwan, N.,</author>
		<author>Marengo, José Antonio,</author>
		<author>Kurths, J.,</author>
		<group></group>
		<group></group>
		<group></group>
		<group></group>
		<group></group>
		<group>CST-CST-INPE-MCTI-GOV-BR</group>
		<affiliation>Humboldt University Berlin</affiliation>
		<affiliation>Humboldt University Berlin</affiliation>
		<affiliation>University of California</affiliation>
		<affiliation>Universidade de São Paulo (USP)</affiliation>
		<affiliation>Potsdam Institute for Climate Impact Research</affiliation>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<affiliation>University Berlin</affiliation>
		<electronicmailaddress></electronicmailaddress>
		<electronicmailaddress></electronicmailaddress>
		<electronicmailaddress></electronicmailaddress>
		<electronicmailaddress></electronicmailaddress>
		<electronicmailaddress></electronicmailaddress>
		<electronicmailaddress>jose.marengo@inpe.br</electronicmailaddress>
		<e-mailaddress>marcelo.pazos@inpe.br</e-mailaddress>
		<journal>Geophysical Research Letters</journal>
		<volume>41</volume>
		<number>20</number>
		<pages>7397-7405</pages>
		<secondarymark>A1_ENGENHARIAS_I A1_INTERDISCIPLINAR A1_CIÊNCIAS_AMBIENTAIS A1_GEOCIÊNCIAS A1_BIODIVERSIDADE A1_ENGENHARIAS_III A1_CIÊNCIAS_AGRÁRIAS_I A1_GEOGRAFIA A2_QUÍMICA A2_CIÊNCIAS_BIOLÓGICAS_I A2_ENGENHARIAS_II A2_ENGENHARIAS_IV B1_ASTRONOMIA_/_FÍSICA B2_ENSINO</secondarymark>
		<transferableflag>1</transferableflag>
		<contenttype>External Contribution</contenttype>
		<versiontype>publisher</versiontype>
		<keywords>Atmospheric thermodynamics, Complex networks, Mechanical waves, Synchronization, Tropics, Event synchronization, Extreme rainfall, Large-scale circulation patterns, Monsoon system, Nonlinear synchronization, Rainfall variability, Rossby wave, Southeastern South America, Rain, extreme event, monsoon, nonlinearity, precipitation assessment, rainfall, Rossby wave, subtropical region, Andes, Brazil.</keywords>
		<abstract>Intraseasonal rainfall variability of the South American monsoon system is characterized by a pronounced dipole between southeastern South America and southeastern Brazil. Here we analyze the dynamical properties of extreme rainfall events associated with this dipole by combining a nonlinear synchronization measure with complex networks. We make the following main observations: (i) Our approach reveals the dominant synchronization pathways of extreme events for the two dipole phases, (ii) while extreme rainfall synchronization in the tropics is directly driven by the trade winds and their deflection by the Andes mountains, extreme rainfall propagation in the subtropics is mainly dictated by frontal systems, and (iii) the well-known rainfall dipole is, in fact, only the most prominent mode of an oscillatory pattern that extends over the entire continent. This provides further evidence that the influence of Rossby waves, which cause frontal systems over South America and impact large-scale circulation patterns, extends beyond the equator. Key PointsComplex networks substitute EOFs for spatial analysis of extreme rainfallReveal drivers of extreme rainfall related to South American rainfall dipoleExtreme events controlled by Rossby oscillation extending over the entire continent.</abstract>
		<area>CST</area>
		<language>en</language>
		<usergroup>administrator</usergroup>
		<usergroup>marcelo.pazos@inpe.br</usergroup>
		<readergroup>administrator</readergroup>
		<readergroup>marcelo.pazos@inpe.br</readergroup>
		<visibility>shown</visibility>
		<archivingpolicy>denypublisher6 allowfinaldraft</archivingpolicy>
		<readpermission>allow from all</readpermission>
		<documentstage>not transferred</documentstage>
		<tertiarymark>Trabalho não Vinculado à Tese/Dissertação</tertiarymark>
		<nexthigherunit>8JMKD3MGPCW/3F3T29H</nexthigherunit>
		<citingitemlist>sid.inpe.br/bibdigital/2013/10.19.20.40 3</citingitemlist>
		<dissemination>WEBSCI; AGU; COMPENDEX; SCOPUS.</dissemination>
		<hostcollection>sid.inpe.br/mtc-m21b/2013/09.26.14.25.20</hostcollection>
		<username>marcelo.pazos@inpe.br</username>
		<lasthostcollection>sid.inpe.br/mtc-m21b/2013/09.26.14.25.20</lasthostcollection>
		<url>http://mtc-m21b.sid.inpe.br/rep-/sid.inpe.br/mtc-m21b/2015/01.13.18.16.16</url>
	</metadata>
</metadatalist>